วันพุธที่ 2 ธันวาคม พ.ศ. 2552




>_< อ่านค่าความต้านทาน>_<










ตัวความต้านทาน คือรีซีสเตอร์ (Resistor) หรือ “อาร์” (R) ซึ่งจะเป็นอุปกรณ์ที่ใช้กันมากในวงจรอิเล็กทรอนิกส์ อย่างเช่น วงจรขยายเสียง, วงจรวิทยุ, วงจรเครื่องรับโทรทัศน์ และอุปกรณ์เครื่องใช้ไฟฟ้าอื่น ๆ

สัญลักษณ์


ตัวความต้านทานแต่ละตัวในวงจร จะมีหน้าที่ที่แตกต่างกันออกไป แต่หน้าที่โดยทั่วไปแล้วตัวความต้านทานจะทำหน้าที่คือ เป็นตัวจำกัดการไหลของกระแสไฟฟ้า และแรงเคลื่อนไฟฟ้า ตามจุดต่าง ๆ ที่กำหนดไว้ในวงจร


ค่าของตัวความต้านทาน จะมีหน่วยในการวัดเป็น โอห์ม (Ohm)







การอ่านต้านทานแบบ 4 ,5 แถบสี







1.หันแถบสีค่าผิดพลาดไปทางขวามือ ( ลักษณะแถบสีค่าผิดพลาดจะมีระยะห่างจากแถบสีอื่นๆ มากที่สุด และจะเป็นสี น้ำตาล แดง ทอง และเงิน เท่านั้น )ยกตัวอย่าง ตัวต้านทาน 4 แถบสี ส่วนใหญ่ค่าผิดพลาดคือสีทอง (ค่าผิดพลาด +- 5% )ยกตัวอย่าง ตัวต้านทาน 5 แถบสี ส่วนใหญ่ค่าผิดพลาดคือสีน้ำตาล (ค่าผิดพลาด +- 1% )


2.การอ่านให้อ่านแถบสีไล่จากซ้ายไปขวา แถบสีที่อยู่ก่อนแถบสีค่าผิดพลาด คือแถบสีตัวคูณ ส่วนแถบสีก่อนหน้านั้นให้นำค่ามาไล่กันตามลำดับ















3.แปลงค่าหน่วยให้อยู่ในรูปของตัวเลขที่อ่านง่าย













ตัวอย่าง วิธีการอ่าน resistor 5 แถบสีR มีแถบสี น้ำตาล ดำ ดำ ดำ น้ำตาล จะอ่านได้ดังนี้ น้ำตาล(1) ดำ(0) ดำ(0) x ดำ(10e0) = 100x10 =1000 หรือ 1 k Ohm



แบบ 6 สี

ความต้านทานแบบ 6 สี จะอ่านค่า 5 แถบสีแรกแบบความต้านทาน 5 แถบสี ส่วนสีที่ 6 คือค่า Temperrature Coefdicient (CT) หรือสัมประสิทธ์ทางอุณหภูมิ มีหน่วยเป็น ppm (part per million : ส่วนในล้านส่วน) เป็นค่าแสดงลักษณะการเปลี่ยนแปลงค่าความต้านทาน เมื่ออุณหภูมิเปลี่ยนไป

















แหล่งอ้างอิง การอ่านแถบสี
http://www.basiclite.com/web/index.php?topic=62.0





วันพุธที่ 18 พฤศจิกายน พ.ศ. 2552

โรงไฟฟ้านิวเคลียร์


โรงไฟฟ้านิวเคลียร์




“โรงไฟฟ้านิวเคลียร์” คือ โรงงานผลิต กระแสไฟฟ้าที่ใช้พลังงานความร้อนจากปฏิกิริยาแตกตัวทางนิวเคลียร์ (nuclear fission reaction) ทำให้น้ำกลายเป็นไอน้ำที่มีแรงดันสูง แล้วส่งไอน้ำไปหมุนกังหันไอน้ำ ซึ่งต่อกับเครื่องกำเนิดไฟฟ้า เพื่อผลิตไฟฟ้า และส่งต่อไปยังผู้บริโภคต่อไป
โรงไฟฟ้านิวเคลียร์มีหลักการผลิตไฟฟ้าคล้ายกับโรงไฟฟ้าพลังความร้อนทั่วไป กล่าวคือ จะใช้พลังงานความร้อนไปผลิตไอน้ำ แล้วส่งไอน้ำไปหมุนกังหันไอน้ำและ เครื่องกำเนิดไฟฟ้า เพื่อผลิตกระแสไฟฟ้า ออกมา แต่มีข้อแตกต่างกันคือ ต้นกำเนิดพลังงานความร้อนของโรงไฟฟ้านิวเคลียร์เกิดจากปฏิกิริยาแตกตัวของยูเรเนียม-๒๓๕ ในเชื้อเพลิงนิวเคลียร์ ส่วนความร้อนจากโรงไฟฟ้าพลังความร้อนทั่วไปนั้นได้จากการเผาไหม้ของเชื้อเพลิง ซึ่งได้แก่ ถ่านหินหรือลิกไนต์ ก๊าซธรรมชาติหรือน้ำมัน เมื่อเปรียบเทียบปริมาณเชื้อเพลิงที่ใช้สำหรับการ ผลิตไฟฟ้า พบว่า หากใช้ยูเรเนียมธรรมชาติ (ความเข้มข้นของยูเรเนียม-๒๓๕ ประมาณร้อยละ ๐.๗) จำนวน ๑ ตัน จะสามารถผลิตไฟฟ้าได้มากกว่า ๔๐ ล้านกิโลวัตต์/ชั่วโมง ในขณะที่ต้องใช้ถ่านหินถึง ๑๖,๐๐๐ ตัน หรือใช้น้ำมันถึง ๘๐,๐๐๐ บาร์เรล (ประมาณ ๑๓ ล้านลิตร) จึงจะผลิตไฟฟ้าได้เท่ากัน
การนำพลังงานนิวเคลียร์มาใช้เพื่อผลิต ไฟฟ้า เป็นความสำเร็จทางวิทยาศาสตร์ที่เกิดขึ้นในช่วงเวลาประมาณ ๕๐ ปีที่ผ่านมานี้เอง โดยใน พ.ศ. ๒๔๙๔ ได้มีการทดลอง เดินเครื่องปฏิกรณ์เพื่อผลิตกระแสไฟฟ้าเป็นครั้งแรกของโลกขึ้นที่สถานีทดลองพลังงานไอดาโฮ เพื่อจ่ายกระแสไฟฟ้าให้แก่ เมืองอาร์โค มลรัฐไอดาโฮ ประเทศสหรัฐอเมริกา
การก่อสร้างโรงไฟฟ้านิวเคลียร์แบบปฏิกรณ์ความดันสูงในเชิงพาณิชย์ขนาด ๗๕ เมกะวัตต์ ได้เริ่มขึ้นที่ชิปปิงพอร์ต มลรัฐเพนซิลเวเนีย ประเทศสหรัฐอเมริกา ใน พ.ศ. ๒๔๙๗ และได้จ่ายกระแสไฟฟ้าให้แก่เมืองพิตต์สเบิร์ก ใน พ.ศ. ๒๕๐๐
ต่อมาใน พ.ศ. ๒๕๐๒ โรงไฟฟ้านิวเคลียร์เดรสเดน (แบบปฏิกรณ์น้ำเดือด) ได้เดินเครื่องจ่ายกระแสไฟฟ้าให้แก่เมืองมอร์ริส มลรัฐอิลลินอยส์ หลังจากนั้น การก่อสร้างโรงไฟฟ้านิวเคลียร์ทั้ง ๒ แบบได้ขยายตัวขึ้น และแพร่หลายไปยังประเทศอื่นๆ รวมทั้งการพัฒนาเทคโนโลยีโรงไฟฟ้า นิวเคลียร์ให้มีขนาดใหญ่ขึ้นกว่า ๑,๐๐๐ เมกะวัตต์ และมีความปลอดภัยยิ่งขึ้น





โรงไฟฟ้านิวเคลียร์มีส่วนประกอบที่สำคัญ คือ
๑) อาคารปฏิกรณ์ ประกอบด้วย เครื่องปฏิกรณ์ เครื่องผลิตไอน้ำ เครื่องควบคุมความดัน ปั๊มน้ำระบายความร้อน อุปกรณ์อื่นๆ เช่น วัสดุกำบังรังสี ระบบควบคุมการเดินเครื่อง และระบบความปลอดภัยต่างๆ
๒) อาคารเสริมระบบปฏิกรณ์ ประกอบด้วย เครื่องมืออุปกรณ์สำหรับการเดินเครื่องปฏิกรณ์ อุปกรณ์ความปลอดภัย บ่อเก็บเชื้อเพลิงใช้แล้ว
๓) อาคารกังหันไอน้ำ ประกอบด้วย ชุดกังหันไอน้ำ เครื่องกำเนิดไฟฟ้าและอุปกรณ์ประกอบ
๔) สถานีไฟฟ้าแรงสูง ประกอบด้วย ระบบสายส่งไฟฟ้าแรงสูงและอุปกรณ์ประกอบ
๕) อาคารฝึกหัดเดินเครื่องโรงไฟฟ้า ประกอบด้วย แบบจำลองสำหรับฝึกหัดเดินเครื่องโรงไฟฟ้า ทั้งสภาวะปกติและฉุกเฉิน
๖) อาคารระบบคอมพิวเตอร์ ประกอบด้วย ระบบอุปกรณ์/ข้อมูลสำหรับ การเดินเครื่องโรงไฟฟ้า
๗) หม้อแปลงไฟฟ้า ประกอบด้วย หม้อแปลงไฟฟ้าหลัก และหม้อแปลงไฟฟ้าสำรองสำหรับการเดินเครื่อง
๘) อาคารอำนวยการ ประกอบด้วย สำนักงาน ห้องทำงานต่างๆ ห้องประชุม
๙) อาคารสำนักงานและฝึกอบรม ประกอบด้วย ห้องทำงาน ห้องฝึกอบรม ห้องประชุม ห้องปฏิบัติการทางเคมี ห้องอาหาร
๑๐) อาคารรักษาความปลอดภัย เป็นอาคารทางเข้าบริเวณโรงไฟฟ้า ประกอบด้วย เจ้าหน้าที่และอุปกรณ์เครื่องมือของระบบรักษาความปลอดภัยต่างๆ
๑๑) อาคารโรงสูบน้ำ เป็นอาคารที่สูบน้ำจากแหล่งน้ำธรรมชาติภายนอก เพื่อนำมาควบแน่นไอน้ำในระบบผลิตไอน้ำ ประกอบด้วย ชุดปั๊มน้ำ และอุปกรณ์ประกอบต่างๆ
๑๒) ส่วนประกอบอื่นๆ ได้แก่ ระบบสายส่งไฟฟ้าแรงสูง และหอระบายความร้อน (ถ้าไม่มีแหล่งน้ำธรรมชาติขนาดใหญ่)
โรงไฟฟ้านิวเคลียร์แบ่งการทำงานออก เป็น ๒ ส่วนใหญ่ๆ คือ
๑) ส่วนผลิตความร้อน ได้แก่ เครื่องปฏิกรณ์นิวเคลียร์ ระบบน้ำระบายความร้อน และเครื่องผลิตไอน้ำ
๒) ส่วนผลิตกระแสไฟฟ้า ประกอบด้วย กังหันไอน้ำ และเครื่องกำเนิดไฟฟ้า โดยส่วนผลิตความร้อนจะส่งผ่านความร้อนให้กระบวนการผลิตไอน้ำ เพื่อนำไปใช้ผลิต ไฟฟ้าต่อไป
พิจารณาจากหลักการทำงาน อาจแบ่งโรงไฟฟ้านิวเคลียร์ออกได้เป็น ๓ แบบดังนี้
๑. โรงไฟฟ้านิวเคลียร์แบบปฏิกรณ์ความดันสูง (Pressurized Water Reactor : PWR)
โรงไฟฟ้านิวเคลียร์แบบ PWR มีหลักการทำงานคือ เมื่อเครื่องปฏิกรณ์ทำงาน จะเกิดปฏิกิริยาแตกตัวกับเชื้อเพลิงนิวเคลียร์ ทำให้เกิดความร้อน กัมมันตรังสี และผลิตผล จากการแตกตัว (fission product) หรือกาก เชื้อเพลิง โดยความร้อนจากเชื้อเพลิงจะถ่ายเทให้แก่น้ำระบายความร้อนวงจรที่ ๑ ซึ่งไหลเวียนตลอดเวลาด้วยปั๊มน้ำ โดยมีเครื่องควบคุมความดันคอยควบคุมความดันภายในระบบให้สูงและคงที่ ส่วนน้ำที่รับความร้อนจากเชื้อเพลิงจะไหลไปยังเครื่องผลิตไอน้ำ และถ่ายเทความร้อนให้ระบบน้ำวงจรที่ ๒ ซึ่งแยกเป็นอิสระจากกัน ทำให้น้ำเดือดกลายเป็นไอน้ำแรงดันสูง และถูกส่งผ่านไปหมุนกังหันไอน้ำ และเครื่องกำเนิด ไฟฟ้าซึ่งต่ออยู่กับกังหันไอน้ำ เมื่อเครื่องกำเนิดไฟฟ้าหมุน จะเกิดกระแสไฟฟ้าที่สามารถนำไปใช้งานได้ต่อไป ไอน้ำแรงดันสูงที่หมุนกังหันไอน้ำแล้ว จะมีแรงดันลดลง และถูกส่งผ่านมาที่เครื่องควบแน่นไอน้ำ เมื่อไอน้ำได้รับความเย็นจากวงจรน้ำเย็นจะกลั่นตัวเป็นน้ำและส่งกลับไปยังเครื่องผลิตไอน้ำด้วยปั๊มน้ำ เพื่อรับความร้อนจากระบบน้ำวงจรที่ ๑ วนเวียนเช่นนี้ตลอดการเดินเครื่องปฏิกรณ์
๒. โรงไฟฟ้านิวเคลียร์แบบปฏิกรณ์น้ำเดือด (Boiling Water Reactor : BWR)
โรงไฟฟ้านิวเคลียร์แบบ BWR มีหลัก การทำงานคล้ายโรงไฟฟ้านิวเคลียร์แบบ PWR แต่มีข้อแตกต่างกันที่ส่วนผลิตความร้อน เพราะความร้อนจากเชื้อเพลิงที่ถ่ายเทให้แก่วงจรน้ำระบายความร้อน จะทำให้น้ำเดือดกลายเป็นไอน้ำไปหมุนกังหันไอน้ำโดยตรง โดยไม่มีระบบน้ำวงจรที่ ๒ มารับความร้อน เหมือนแบบ PWR
๓. โรงไฟฟ้านิวเคลียร์แบบปฏิกรณ์น้ำมวลหนัก (Pressurized Heavy Water Reactor : PHWR)
โรงไฟฟ้านิวเคลียร์แบบ PHWR หรือมีชื่อทางการค้าว่า แคนดู (CANDU : CANada Deuterium Uranium) มีหลักการทำงานเหมือนโรงไฟฟ้าแบบ PWR แต่แตกต่างกันที่เครื่องปฏิกรณ์จะวางในแนวนอน ใช้ยูเรเนียมธรรมชาติเป็นเชื้อเพลิง และใช้น้ำมวลหนัก (Heavy water : D2O) เป็นสาร ระบายความร้อนและสารหน่วงนิวตรอน









แหล่งอ้างอิง

โรงงานไฟฟ้า

โรงไฟฟ้าพลังน้ำ
โรงไฟฟ้าพลังน้ำ เป็นแหล่งผลิตไฟฟ้าที่สำคัญอีกชนิดหนึ่งของประเทศไทย โรงไฟฟ้าชนิดนี้ใช้น้ำในลำน้ำธรรมชาติเป็นพลังงานในการเดินเครื่อง โดยวิธีสร้างเขื่อนปิดกั้นแม่น้ำไว้ เป็นอ่างเก็บน้ำ ให้มีระดับอยู่ในที่สูงจนมีปริมาณน้ำ และแรงดันเพียงพอที่จะนำมาหมุนเครื่องกังหันน้ำและเครื่องกำเนิดไฟฟ้าซึ่งอยู่ในโรงไฟฟ้าท้ายน้ำที่มีระดับต่ำกว่าได้ กำลังผลิตติดตั้งและพลังงานไฟฟ้าที่ผลิตได้จากโรงไฟฟ้าชนิดนี้ จะเพิ่มเป็นสัดส่วนโดยตรงกับแรงดันและปริมาณน้ำที่ไหลผ่านเครื่องกังหันน้ำโรงไฟฟ้าพลังน้ำแบ่งตามลักษณะการบังคับน้ำเพื่อผลิตไฟฟ้าได้ 4 แบบ คือ
1. โรงไฟฟ้าแบบมีน้ำไหลผ่านตลอดปี (Run-of-river Hydro Plant) โรงไฟฟ้าแบบนี้ไม่มีอ่างเก็บน้ำ โรงไฟฟ้าจะผลิตไฟฟ้าโดยการใช้น้ำที่ไหลตามธรรมชาติของลำน้ำ หากน้ำมีปริมาณมากเกินไปกว่าที่โรงไฟฟ้าจะรับไว้ได้ก็ต้องทิ้งไป ส่วนใหญ่โรงไฟฟ้าแบบนี้จะอาศัยติดตั้งอยู่กับเขื่อนผันน้ำชลประทานซึ่งมีน้ำไหลผ่านตลอดปีจากการกำหนดกำลังผลิตติดตั้งมักจะคิดจากอัตราการไหลของน้ำประจำปีช่าวต่ำสุดเพื่อที่จะสามารถเดินเครื่องผลิตไฟฟ้าได้อย่างสม่ำเสมอตลอดทั้งปี ตัวอย่างของโรงไฟฟ้าชนิดนี้ได้แก่ โรงไฟฟ้าที่ กฟผ.กำลังศึกษาเพื่อก่อสร้างที่เขื่อนผันน้ำเจ้าพระยา จังหวัดชัยนาท และเขื่อนผันน้ำวชิราลงกรณ จังหวัดกาญจนบุรี
2. โรงไฟฟ้าแบบมีอ่างเก็บน้ำขนาดเล็ก (Regulating Pond Hydro Plant) โรงไฟฟ้าแบบมีอ่างเก็บน้ำขนาดเล็กที่สามารถบังคับการไหลของน้ำได้ในช่วงสั้นๆ เช่น ประจำวัน หรือประจำสัปดาห์ การผลิตไฟฟ้าจะสามารถควบคุมให้สอดคล้องกับความต้องการได้ดีกว่าโรงไฟฟ้าแบบ (Run-of-river) แต่อยู่ในช่วงเวลาที่จำกัดตามขนาดของอ่างเก็บน้ำ ตัวอย่างของโรงไฟฟ้าประเภทนี้ได้แก่ โรงไฟฟ้าเขื่อนท่าทุ่งนา จังหวัดกาญจนบุรี และโรงไฟฟ้าขนาดเล็กบ้านสันติ จังหวัดยะลา
3. โรงไฟฟ้าแบบมีอ่างเก็บน้ำขนาดใหญ่ (Reservoir Hydro Plant) โรงไฟฟ้าแบบนี้มีเขื่อนกั้นน้ำขนาดใหญ่และสูงกั้นขวางลำน้ำไว้ ทำให้เกิดเป็นทะเลสาบใหญ่ ซึ่งสามารถเก็บกักน้ำในฤดูฝนและนำไปใช้ในฤดูแล้งได้ โรงไฟฟ้าแบบนี้นับว่ามีประโยชน์มาก เพราะสามารถควบคุมการใช้น้ำในการผลิตกระแสไฟฟ้า เสริมในช่วงที่มีความต้องการใช้ไฟฟ้าสูงได้อย่างมีประสิทธิภาพสูงตลอดปี โรงไฟฟ้าพลังน้ำขนาดใหญ่ส่วนมากในประเทศไทยจัดอยู่ในโรงไฟฟ้าประเภทนี้
4. โรงไฟฟ้าแบบสูบน้ำกลับ ( Pumped Storage Hydro Plant) โรงไฟฟ้าแบบนี้มีเครื่องสูบน้ำที่สามารถสูบน้ำที่ปล่อยจากอ่างเก็บน้ำลงมาแล้ว นำกลับขึ้นไป เก็บไว้ในอ่างเก็บน้ำเพื่อใช้ผลิตกระแสไฟฟ้าได้อีก ประโยชน์ของโรงไฟฟ้าชนิดนี้เกิดจากการแปลงพลังงานที่เหลือใช้ในช่วงที่มีความต้องการใช้ไฟฟ้าต่ำเช่นเวลาเที่ยงคืนนำไปสะสมไว้ในรูปของการเก็บน้ำในอ่างน้ำเพื่อที่จะสามารถใช้ผลิตกระแสไฟฟ้าได้อีกครั้งหนึ่งในช่วงที่มีความต้องการใช้ไฟฟ้าสูง เช่น เวลาหัวค่ำ ตัวอย่างของโรงไฟฟ้าแบบนี้ ได้แก่ โรงไฟฟ้าเขื่อนศรีนครินทร์ได้หน่วยที่ 4 ซึ่งสามารถสูบน้ำกลับขึ้น ไปเก็บไว้ในอ่างเก็บน้ำเขื่อนศรีนครินทร์ได้








ส่วนประกอบที่สำคัญ








เขื่อนเก็บกักน้ำ ทำหน้าที่เก็บกักน้ำในลำน้ำไว้เป็นอ่างเก็บน้ำให้มีปริมาณ และระดับน้ำสูงพอที่จะใช้ในการเดินเครื่องผลิตไฟฟ้าแบ่งออกเป็นประเภทใหญ่ 5 ประเภท คือ
เขื่อนหิน
เขื่อนชนิดนี้ไม่จำเป็นต้องมีดินฐานรากที่แข็งแรงมาก วัสดุที่ใช้เป็นตัวเขื่อนประกอบด้วยหินถมที่หาได้จากบริเวณใกล้เคียงกับสถานที่ก่อสร้างเป็นส่วนใหญ่ มีผนังกันน้ำซึมอยู่ตรงกลางแกนเขื่อน หรือด้านหน้าหัวเขื่อนโดยวัสดุที่ใช้ทำผนังกันน้ำซึมอาจจะเป็นดินเหนียว คอนกรีตหรือวัสดุกันซึมอื่นๆ เช่น ยางแอสฟัลท์ก็ได้ ตัวอย่าง เขื่อนชนิดนี้ในประเทศไทย ได้แก่ เขื่อนศรีนครินทร์ เขื่อนวชิราลงกรณ์ และเขื่อนบางลาง เป็นต้น
เขื่อนดิน
เขื่อนดินมีคุณสมบัติและลักษณะในการออกแบบคล้ายคลึงกับเขื่อนหิน แต่วัสดุที่ใช้ถมตัวเขื่อนมีดินเป็นส่วนใหญ่ ตัวอย่างเขื่อนชนิดนี้ ในประเทศไทย ได้แก่ เขื่อนสิริกิติ์ เขื่อนแก่งกระจาน และเขื่อนแม่งัด เป็นต้น
เขื่อนคอนกรีตแบบกราวิตี้
เขื่อนชนิดนี้ใช้ก่อสร้างในที่ตั้งที่มีหินฐานรากเป็นหินที่ดีมีความแข็งแรง การออกแบบตัวเขื่อนเป็นคอนกรีตที่มีความหนาและ น้ำหนักมากพอที่จะต้านทานแรงดันของน้ำ หรือแรงดันอื่นๆได้ โดยอาศัยน้ำหนักของตัวเขื่อนเอง รูปตัดของตัวเขื่อนมักจะเป็นรูปสามเหลี่ยมเป็นแนวตรงตลอดความยาวของตัวเขื่อน
เขื่อนคอนกรีตแบบโค้ง
เขื่อนคอนกรีตแบบโค้ง มีคุณสมบัติที่จะต้านแรงดันของน้ำและแรงภายนอกอื่นๆ โดยความโค้งของตัวเขื่อน เขื่อนแบบนี้เหมาะที่จะสร้างในบริเวณหุบเขาที่มีลักษณะเป็นรูปตัว U และมีหินฐานรากที่แข็งแรง เมื่อเปรียบเทียบเขื่อนแบบนี้กับเขื่อนแบบกราวิตี้ เขื่อนแบบนี้มีรูปร่างแบบบางกว่ามากทำให้ราคาค่าก่อสร้างถูกกว่า แต่ข้อเสียของเขื่อนแบบนี้ คือการออกแบบและการดำเนินการก่อสร้างค่อนข้างยุ่งมาก มักจะต้องปรับปรุงฐานรากให้มีความแข็งแรงขึ้นด้วย เขื่อนภูมิพลซึ่งเป็น เขื่อนขนาดใหญ่แห่งแรกในประเทศไทย มีลักษณะผสมระหว่างแบบกราวิตี้และแบบโค้ง ซึ่งให้ทั้งความแข็งแรงและประหยัด
เขื่อนกลวงหรือเขื่อนครีบ
เขื่อนกลวงมีโครงสร้างซึ่งรับแรงภายนอก เช่น แรงดันของน้ำ ที่กระทำต่อผนังกั้นน้ำที่เป็นแผ่นเรียบหรือครีบ (Buttress) ที่รับผนังกั้นน้ำและถ่ายแรงไปยังฐานราก เขื่อนประเภทนี้มักจะเป็นเขื่อนคอนกรีตเสริมเหล็ก ใช้วัสดุก่อสร้างน้อย โดยทั่วไปแล้วเป็นเขื่อนที่ประหยัดมาก แต่ความปลอดภัยของเขื่อนประเภทนี้มีน้อยกว่าเขื่อนกราวิตี้ เนื่องจากมีความแข็งแรงน้อยกว่าด้วยเหตุนี้จึงไม่ค่อยมีผู้นิยมสร้างเขื่อนประเภทนี้มากนัก
เครื่องกังหันน้ำ (Hydro Turbine) ทำหน้าที่รับน้ำจากอ่างเก็บน้ำมาหมุนเครื่องกังหันน้ำซึ่งต่อเข้ากับเครื่องกำเนิดไฟฟ้ากังหันน้ำจำแนกออกเป็นประเภทใหญ่ ๆ ได้ 2 ประเภท คือ Reaction กับ Impulse กังหันน้ำทั้ง 2 ประเภทมีคุณสมบัติแตกต่างกัน














กังหันน้ำประเภท Reaction ที่ใช้กันแพร่หลายอยู่ทั่วไป คือ แบบ Francis และ Kaplan ส่วนกังหันน้ำประเภท Impulseนั้นแบบที่สำคัญและเป็นที่รู้จักกันดีว่าแบบอื่น ๆ ก็คือ กังหันน้ำแบบ Pelton การพิจารณาเลือกสรรประเภท และแบบของกังหันน้ำเพื่อให้เหมาะสมกับสภาพของงานนั้นอาศัยหลักเกณฑ์กว้างๆพอเป็นแนวทางได้ดังนี้
Head
กังหันน้ำแบบ (เมตร) Kaplan (Fixed - blade) 1 ถึง 30
Kaplan (Adjustable - blade) 1 ถึง 60
Francis 25 ถึง 450 Pelton 250 ขึ้นไป
ในกรณีนี้น้ำซึ่งใช้หมุนกังหันน้ำ มีกรวดทรายปนอยู่ด้วย และกังหันมีแรงม้าไม่สูงนักแล้วกังหันน้ำแบบ Pelton เป็นดีที่สุด ซึ่งอาจใช้กับHead ต่ำลงมาถึง 120 หรือ 150 เมตร ได้ Runner ของกังหันน้ำแบบต่าง ๆ เครื่องกำเนิดไฟฟ้า(Generator) จำแนกตามความเร็วรอบและขนาดอย่างกว้างๆได้ดังต่อไปนี้ (ความถี่มาตรฐาน 50 ไซเกิลวินาที) เครื่องความเร็วรอบสูง ขนาดเล็ก คือ ขนาด 200 – 2,000 เควี เอ.หมุน 1,000 – 750 รอบต่อนาที (หรืออาจต่ำกว่านี้) ส่วนมากเป็นชนิดเพลานอน (Horizontal Shaft) ต่อตรงกับกังหันน้ำประเภท Impulse บางทีก็เป็นชนิดเพลาตั้ง(Vertical Shaft) ต่อตรงหรือขับด้วยเกียร์จากกังหันรอบช้า ในบางโอกาสที่ใช้กับกังหันน้ำประเภท Reaction ด้วยก็มีเครื่องความเร็วรอบสูง ขนาดใหญ่ คือขนาด 3,000 – 100,000 เควี เอ. หรือสูงกว่านี้หมุน 750 – 333 รอบต่อนาที มีทั้งชนิดเพลานอนและเพลาตั้ง เหมาะกับกังหันน้ำประเภท Impulse หรือ Reaction เครื่องความเร็วรอบต่ำ ขนาดเล็ก คือ ขนาด 200 – 2,00 เควี. หมุน 250 รอบต่อนาทีลงมา จนถึงขนาด 5,000 หรือ 10,000 เควี หมุน 125 รอบต่อนาทีลงมา ส่วนมากเป็นชนิดเพลาตั้ง เหมาะกับกังหันน้ำแบบ Francis และ Kaplan เครื่องความเร็วรอบต่ำ ขนาดใหญ่ คือ ขนาด 5,000 – 250,000 เควีเอ. หมุนหรือสูงกว่านี้ หมุน 250 – 75 รอบต่อนาที เป็นเครื่องชนิดเพลาตั้ง เหมาะกับกังหันน้ำแบบ Francis และ Kaplan 2.6.3 ค่าลงทุนขั้นแรกและต้นทุนการผลิตไฟฟ้าโรงไฟฟ้าพลังน้ำใหม่มีค่าลงทุนขั้นแรกประมาณ 20,000 – 56,375 บาทต่อกิโลวัตต์ คิดเป็นต้นทุนการผลิตประมาณ 1.20 – 2.20 บาทต่อหน่วย








แหล่งอ้างอิง

http://www.panyathai.or.th/wiki/index.php/%E0%B9%82%E0%B8%A3%E0%B8%87%E0%B9%84%E0%B8%9F%E0%B8%9F%E0%B9%89%E0%B8%B2%E0%B8%9E%E0%B8%A5%E0%B8%B1%E0%B8%87%E0%B8%99%E0%B9%89%E0%B8%B3


























วันเสาร์ที่ 29 สิงหาคม พ.ศ. 2552

ภาพลวงตา


ภาพลวงตา หมายถึงภาพที่หลอกตาให้มองเห็นและรับรู้ผิดพลาดไปจากความจริง ส่วนใหญ่สายตาจะรับรู้ผิดพลาดเกี่ยวกับรูปทาง ขนาด และ สี

ตาของทุกคน บางครั้งไม่ได้เห็นสิ่งที่เป็นอยู่จริง และสามารถหลอกได้ไม่ยากนัก ก่อนที่จะกล่าวถึงสาเหตุที่ทำให้เกิดภาพลวงตา ขอกล่าวถึงการทำงานประสานกันระหว่างตาและสมองดังนี้ ตาและสมองทำงานประสานกันอย่างใกล้ชิดมาก โดยตาเป็นอวัยวะที่ทำหน้าที่รับภาพเข้ามา ส่วนสมองทำงหน้าที่ประมวลผล และวิเคราะห์ว่าภาพที่รับเข้ามานั้นเป็นภาพอะไร มีสีอะไร เป็นภาพเคลื่อนไหวหรือภาพนิ่ง เมื่องแสงจากวัตถุกระทบเลนส์ตา จะเกิดการหักเหและปรากฏเป็นภาพจริง

สาเหตุของการเกิดภาพลวงตา

1. เกิดจากความสามารถในการกวาดสายตาในแนวดิ่งและแนวราบไม่เท่ากัน

2. เกิดจากตาสองข้างส่งข้อมูลที่แตกต่างไปยังสมอง
3. เกิดจากการเติมสิ่งหนึ่งสิ่งใด ( เช่นภาพแรกที่จริงๆแล้วเป็นเส้นขนาน )

4. เกิดจากการเกิดมุมหรือตัดกันของเส้น

5. เกิดจากการเปรียบเทียบ หรือขนาดสัมพัทธ์ (Relative size )
7. เกิดจากการมองเห็นภาพด้วยนัยน์ตาทั้งสองข้าง
การ ชี้นิ้วจากมือทั้งสองข้างเข้าหากันในระดับสายตาห่างจากนัยน์ตาประมาณ 25 เซ็นติเมตร แล้วก็ใช้นัยน์ตาทั้งสองข้างมองไปที่ปลายนิ้วทั้งสองแล้วค่อยๆเลื่อนนิ้ว เข้าหากัน
จะเกิดภาพดังรูป

8. เกิดจากเซลล์ประสาทมีขีดจำกัดในการรับรู้
เราจะเห็นภาพลวงตาสีเทา บริเวณจุดตัดของตารางเกิดจากเซลล์ประสาทมีขีดจำกัดในการรับรู้ ภาพแบบนี้เราเรียกว่า ( Grid illusion )
คิดค้นโดย ลูดิมาร์ เฮอร์มันน์ ในปี พ.ศ. 2413

9. เกิดจากสมบัติของแสง

ภาพลวงตาที่เกิดจากการสะท้อนของแสงทำให้เห็นภาพที่มีขนาดใหญ่กว่าวัถุของจริง


______________ขอบคุณสำหรับทุกท่านที่ติดตามผลงานของผมนะคัฟฟ____________
และขอขอบคุณสำหรับคอมเม้นทุกๆๆคอมเม้นที่เพื่อนๆได้กลั้นจากใจมาเป็คำพูด
กระผมทราบซึ้งใจเป็นอย่างมาก.........และขอให้ติดตามผลงานของผมไปตลอดการนะขอรับ
จัดทำโดย
คุณากร โปธาคำ

วันศุกร์ที่ 14 สิงหาคม พ.ศ. 2552

แสง


เป็นคลื่นแม่เหล็กไฟฟ้า สามารถเคลื่อนที่ได้โดยไม่ต้องอาศัยตัวลาง และมีการเคลื่อนที่แนวเส้นตรงในตัวกลางชนิดอื่น ๆ จะเคลื่อนที่ผ่านตัวกลางแต่ละชนิดด้วยความเร็วไม่เท่ากัน ตัวกลางใดมีความหนาแน่นมากแสงจะเคลื่อนที่ผ่านตัวกลางนั้นด้วยความเร็วน้อย ถ้าแสงเคลื่อนที่ผ่านไม่ได้ก็เป็นเพราะวัตถุมีการดูดกลืน สะท้อนแสง หรือการแทรกสอดของแสง นั้นคือ คุณสมบัติของแสงที่จะกล่าวในหน่วยนี้
การสะท้อนแสง (Reflection) การสะท้อนแสง หมายถึง การที่แสงไปกระทบกับตัวกลางแล้วสะท้อนไปในทิศทางอื่นหรือสะท้อนกลับมาทิศทางเดิมการสะท้อนของแสงนั้นขึ้นอยู่กับพื้นผิวของวัตถุด้วยว่าเรียบหรือหยาบโดยทั่วไปพื้นผิวที่เรียบและมันจะทำให้มุมของแสงที่ตกกระทบมีค่าเท่ากับมุมสะท้อนตำแหน่งที่แสงตกกระทบกับแสงสะท้อนบนพื้นผิวจะเป็นตำแหน่งเดียวกันดังรูปที่ 4.1 ก. ลักษณะของวัตถุดังกล่าว เช่น อลูมิเนียมขัดเงาเหล็กชุบโครเมียม ทอง เงินและกระจกเงา เป็นต้น แต่ถ้าหากวัตถุมีผิวหยาบ แสงสะท้อนก็จะมีลักษณะกระจายกันดังรูปที่ 4.1 ข. เช่น ผนังฉาบปูนกระดาษขาว โดยทั่วไปวัตถุส่วนใหญ่จะเป็นแบบผสมขึ้นอยู่กับผิวนั้นมีความมันหรือหยาบมากกว่า จะเห็นการสะท้อนแสงได้จากรูป 4.1 ก. และรูปที่ 4.1 ข.
















รูป ก.การสะท้อนแสงบนวัตถุผิวเรียบ รูป ข. การสะท้อนแสงผิวขรุขระ
กฎการสะท้อนแสง 1. รังสีตกกระทบ เส้นปกติและรังสีสะท้อนย่อมอยู่บนพื้นระนาบเดียวกัน 2. มุมในการตกกระทบย่อมโตเท่ากับมุมสะท้อน







สดงกฎของการสะท้อนแสง
การหักเหของแสง (Refraction)
การหักเห หมายถึง การที่แสงเคลื่อนที่ผ่านตัวกลางหนึ่งไปยังอีกตัวกลางหนึ่งทำให้แนวลำแสงเกิดการเบี่ยงเบนไปจากแนวเดิม เช่น แสงผ่านจากอากาศไปยังน้ำ ดังแสดงในรูป
รูปแสดงลักษณะการเกิดหักเหของแสง
สิ่งที่ควรทราบเกี่ยวกับการหักเหของแสง - ความถี่ของแสงยังคงเท่าเดิม ส่วนความยาวคลื่น และความเร็วของแสงจะไม่เท่าเดิม - ทิศทางการเคลื่อนที่ของแสงจะอยู่ในแนวเดิมถ้าแสงตำตั้งฉากกับผิวรอยต่อของตัวกลางจะไม่อยู่ในแนวเดิม ถ้าแสงไม่ตกตั้งฉากกับผิวรอยต่อของตัวกลาง ตัวอย่างการใช้ประโยชน์ของการหักเหของแสงเช่น แผ่นปิดหน้าโคมไฟ ซึ่งเป็นกระจกหรือพลาสติก เพื่อบังคับทิศทางของแสงไฟที่ออกจากโคมไปในทิศทางที่ต้องการ จะเห็นว่าแสงจากหลอดไฟจะกระจายไปยังทุกทิศทางรอบหลอดไฟแต่เมื่อผ่านแผ่นปิดหน้าโคมไฟแล้ว แสงจะมีทิศทางเดียวกัน เช่นไฟหน้ารถยนต์ รถมอเตอร์ไซด์ ดังรูปที่
แสงที่ผ่านโคมไฟฟ้าหน้ารถยนต์มีทิศทางเดียวกัน
การกระจายแสง (Diffusion)

การกระจายแสง หมายถึง แสงขาวซึ่งประกอบด้วยแสงหลายความถี่ตกกระทบปริซึมแล้วทำให้เกิดการหักเหของแสง 2 ครั้ง (ที่ผิวรอยต่อของปริซึม ทั้งขาเข้า และขาออก) ทำให้แสงสีต่าง ๆ แยกออกจากกันอย่างเป็นระเบียบเรียงตามความยาวคลื่นและความถี่ ที่เราเรียกว่า สเปกตรัม (Spectrum) รุ้งกินน้ำ เป็นการกระจายของแสง เกิดจากแสงขาวหักเหผ่านผิวของละองน้ำ ทำให้แสงสีต่าง ๆ กระจายออกจากกันแล้วเกิดการสะท้อนกลับหมดที่ผิวด้านหลังของละอองน้ำแล้วหักเหออกสู่อากาศ ทำให้แสงขาวกระจายออกเป็นแสงสีต่าง ๆ กัน แสงจะกระจายตัวออกเมื่อกระทบถูกผิวของตัวกลาง เราใช้ประโยชน์จากการกระจายตัวของลำแสง เมื่อกระทบตัวกลางนี้ เช่น ใช้แผ่นพลาสติกใสปิดดวงโคมพื่อลดความจ้าจากหลอดไฟหรือ โคมไฟชนิดปิดแบบต่าง ๆ
ภาพรุ้งกินน้ำ
การทะลุผ่าน (Transmission) การทะลุผ่าน หมายถึงการที่แสงพุ่งชนตัวกลางแล้วทะลุผ่านมันออกไปอีกด้านหนึ่ง โดยที่ความถี่ไม่เปลี่ยนแปลงวัตถุที่มีคุณสมบัติการทะลุผ่านได้ เช่น กระจก ผลึกคริสตัล พลาสติกใส น้ำและของเหลวต่าง ๆ
การดูดกลืน (Absorbtion) การดูดกลืน หมายถึง การที่แสงถูกดูดกลืนหายเข้าไปในตัวกลางดยทั่วไปเมื่อมีพลังงานแสงถูกดูดกลืนหายเข้าไปในวัตถุใด ๆเช่น เตาอบพลังงานแสงอาทิตย์ เครื่องต้มน้ำพลังงานแสง และยังนำคุณสมบัติของการดูดกลืนแสงมาใช้ในชีวิตประจำวัน เช่น การเลือกสวมใส่เสื้อผ้าสีขาวจะดูดแสงน้อยกว่าสีดำ จะเห็นได้ว่าเวลาใส่เสื้อผ้าสีดำ อยู่กลางแดดจะทำให้ร้อนมากกว่าสีขาว
การแทรกสอด (Interference) การแทรกสอด หมายถึง การที่แนวแสงจำนวน 2 เส้นรวมตัวกันในทิศทางเดียวกัน หรือหักล้างกัน หากเป็นการรวมกัน ของแสงที่มีทิศทางเดียวกัน ก็จะทำให้แสงมีความสว่างมากขึ้น แต่ในทางตรงกันข้ามถ้าหักล้างกัน แสงก็จะสว่างน้อยลด การใช้ประโยชน์จากการสอดแทรกของแสง เช่น กล้องถ่ายรูปเครื่องฉายภาพต่าง ๆ และการลดแสงจากการสะท้อน ส่วนในงานการส่องสว่าง จะใช้ในการสะท้อนจากแผ่นสะท้อนแสง
สรุป คุณสมบัติต่าง ๆ ของแสงแต่ละคุณสมบัตินั้น เราสามารถนำหลักการมาใช้ประโยชน์ได้หลายอย่าง เช่น คุณสมบัติของการสะท้อนแสงของวัตถุ เรานำมาใช้ในการออกแบบแผ่นสะท้อนแสงของโคมไฟ การหักเหของแสงนำ มาออกแบบแผ่นปิดหน้าโคมไฟ ซึ่งเป็นกระจก หรือพลาสติกเพื่อบังคับทิศทางของแสงไฟ ที่ออกจากโคมไปในทิศที่ต้องการ การกระจายตัวของลำแสงเมื่อกระทบตัวกลางเรานำมาใช้ประโยชน์ เช่นใช้แผ่นพลาสติกใสปิดดวงโคมเพื่อลดความจ้าจากหลอดไฟ ต่าง ๆ การดูดกลืนแสง เรานำมาทำ เตาอบพลังงานแสงอาทิตย์ครื่องต้มพลังงานแสง และการแทรกสอดของแสง นำมาใช้ประโยชน์ในกล้องถ่ายรูป เครื่องฉายภาพต่าง ๆ จะเห็นว่าคุณสมบัติแสงดังกล่าวก็ได้นำมาใช้ในชีวิตประจำวันของมนุษย์เราทั้งนั้น

วันพฤหัสบดีที่ 6 สิงหาคม พ.ศ. 2552

กล้องส่องทางไกล





1..กล้องส่องทางไกล

เป็นอุปกรณ์ที่ช่วยให้สามารถมองวัตถุระยะใกล้ได้ มีใช้กันหลายหลายตั้งแต่ทางวิทยาศาสตร์จนถึงทางนันทนาการ ตัวอย่างของกล้องที่นิยมใช้ได้แก่ กล้องโทรทรรศน์ กล้องสองตา หรือกล้องดูนก

(โทษที่นะครับเนื้อหาไม่ค่อยเยอะเท่ารัย.....แต่ช่วยเม้นห้ายทีไว้วันหน้าจาเอามาเพิ่ม)